Macromolecular arrangement in the aminoacyl-tRNA.elongation factor Tu.GTP ternary complex. A fluorescence energy transfer study.
نویسندگان
چکیده
The distance between the corner of the L-shaped transfer RNA and the GTP bound to elongation factor Tu (EF-Tu) in the aminoacyl-tRNA.EF-Tu.GTP ternary complex was measured using fluorescence energy transfer. The donor dye, fluorescein (Fl), was attached covalently to the 4-thiouridine base at position 8 of tRNAPhe, and aminoacylation yielded Phe-tRNAPhe-Fl8. The ribose of GTP was covalently modified at the 2'(3') position with the acceptor dye rhodamine (Rh) to form GTP-Rh. Formation of the Phe-tRNAPhe-Fl8.EF-Tu.GTP-Rh ternary complex was verified both by EF-Tu protection of the aminoacyl bond from chemical hydrolysis and by an EF-Tu.GTP-dependent increase in fluorescein intensity. Spectral analyses revealed that both the emission intensity and lifetime of fluorescein were greater in the Phe-tRNAPhe-Fl8.EF-Tu.GTP ternary complex than in the Phe-tRNAPhe-Fl8.EF-Tu.GTP-Rh ternary complex. These spectral differences disappeared when excess GTP was added to replace GTP-Rh in the latter ternary complex, thereby showing that excited-state energy was transferred from fluorescein to rhodamine in the ternary complex. The efficiency of singlet-singlet energy transfer was low (10-12%), corresponding to a distance between the donor and acceptor dyes in the ternary complex of 70 +/- 7 A, where the indicated uncertainty reflects the uncertainty in dye orientation. After correction for the lengths of the probe attachment tethers, the 2'(3')-oxygen of the GTP ribose and the sulfur in the s4U are separated by a minimum of 49 A. This large distance limits the possible arrangements of the EF-Tu and the tRNA in the ternary complex.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
The influence of different modifications of elongation factor Tu from Escherichia coli on ternary complex formation investigated by fluorescence spectroscopy.
A fluorescence titration assay was used to detect the effects of various modifications of E.coli elongation factor Tu on the formation of the ternary complex with aminoacyl-tRNAs. The treatment of EF-Tu.GDP with TPCK, an analogue of the 3'terminus of aminoacyl-tRNA, was found to have no influence on the conversion of EF-Tu.GDP to 'active' EF-Tu.GTP, but does decrease the affinity of the activat...
متن کاملPulvomycin, an inhibitor of protein biosynthesis preventing ternary complex formation between elongation factor Tu, GTP, and aminoacyl-tRNA.
Pulvomycin and the synonymous antibiotics labilomycin and 1063-Z are shown to inhibit prokaryotic protein synthesis by acting on elongation factor Tu (EF-Tu): in the presence of the antibiotic, the affinity of EF-Tu for guanine nucleotides is altered, the EF-Tu.GDP/GTP exchange is catalyzed, and the formation of the EF-Tu.GTP complex is stimulated. Hydrolysis of GTP by EF-Tu, induced by aminoac...
متن کاملProperties of Escherichia coli EF-Tu mutants designed for fluorescence resonance energy transfer from tRNA molecules.
Here we describe the design, preparation and characterization of 10 EF-Tu mutants of potential utility for the study of Escherichia coli elongation factor Tu (EF-Tu) interaction with tRNA by a fluorescence resonance energy transfer assay. Each mutant contains a single cysteine residue at positions in EF-Tu that are proximal to tRNA sites within the aminoacyl-tRNA.EF-Tu.GTP ternary complex that ...
متن کاملIsolation and stability of ternary complexes of elongation factor Tu, GTP and aminoacyl-tRNA.
Intact, native EF-Tu, isolated using previously described methods and fully active in binding GTP, was never found to be fully active in binding aminoacyl-tRNA as judged by high performance liquid chromatography (HPLC) gel filtration and zone-interference gel-electrophoresis. In the presence of kirromycin, however, all these EF-Tu.GTP molecules bind aminoacyl-tRNA, although with a drastically r...
متن کاملCommon location of determinants in initiator transfer RNAs for initiator-elongator discrimination in bacteria and in eukaryotes.
Initiator tRNAs are used exclusively for initiation of protein synthesis and not for elongation. We show that both Escherichia coli and eukaryotic initiator tRNAs have negative determinants, at the same positions, that block their activity in elongation. The primary negative determinant in E. coli initiator tRNA is the C1xA72 mismatch at the end of the acceptor stem. The primary negative determ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 34 24 شماره
صفحات -
تاریخ انتشار 1995